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Abstract-The problem of conjugate natural convection about a vertical cylindrical fin with uniform 
lateral mass flux in a fluid-saturated porous medium has been studied numerically. Solutions based on 
the third level of truncation are obtained by the local nonsimilarity method. The effects of the surface 
mass flux, the conjugate convection-conduction parameter, and the surface curvature on fin temperature 
distribution, local heat transfer coefficient, local heat flux, average heat transfer coefficient, and total heat 
transfer rate are presented. A comparison with finite-difference solutions for the case of constant wall 

temperature was made, and found in a good agreement. 

INTRODUCTION 

THE ANALYSIS of conjugate heat transfer about a 
vertical fin has attracted considerable interest during 
the past few years. The basic feature which differs 
from the conventional fin theory or boundary layer 
flow analysis is that the heat transfer coefficient 
or thermal boundary conditions, instead of being 
prescribed as in conventional studies, are part of 
the solutions to the problem. This consideration 
is necessary and more realistic in many practical 
applications, particularly in the heat transfer analysis 
of extended surfaces, where the thermal boundary 
conditions are prescribed only at the ends of the 
surfaces. The close interactions between the conduc- 
tion in the solid boundary and the convection in the 
adjacent boundary layer flow exhibit quite an unusual 
local behavior in heat transfer characteristics. 

Conjugate heat transfer problems induced by vari- 
ous convection mechanisms (forced, free, mixed con- 
vection) about a flat plate or a cylindrical surface in 
Newtonian fluids have been investigated extensively 
[l-S]. Recently, Liu et al. [6,7] have extended the 
analysis to include the conjugate mixed convection in 
porous media. However, in the above studies the 
influence of injection or withdrawal of fluids on 
conjugate heat transfer has not been attempted. In 
this paper we direct our attention to conjugate natural 
convection about a vertical cylindrical fin in porous 
media and to the effects of surface mass flux on heat 
transfer characteristics. Natural convection about a 
vertical cylinder in a porous medium has been dis- 
cussed by Minkowycz and Cheng [8] for the case of 
power-law variations of the surface temperature, and 

the influence of uniform lateral mass flux on natural 
convection about a vertical cylinder with prescribed 
constant wall temperature or constant wall heat flux 
was analyzed by Yiicel [9]. The present analysis is an 
extension of the previous work to include the conju- 
gate effects on the heat transfer analysis. 

Numerical solutions of the governing differential 
equations are generated by the local nonsimilarity 
method. Results are presented in tabular or graphic 
forms as functions of three dominant parameters: the 
transverse curvature parameter 1, the surface mass 
transfer parameter o, and the conjugate convection- 
conduction parameter N,,. A comparison was made 
with Yiicel’s results [9], which were obtained by finite 
difference method, for the case of constant wall 
temperature, and found in good agreement. 

ANALYSIS 

Consider a vertical cylindrical fin with length L 
and radius r. whose upper end is attached to a surface 
with temperature Tb. The fin with uniform blowing 
or suction rate vw is situated in a quiescent fluid- 
saturated porous medium of temperature T,, which 
is assumed to be smaller than Tb. The coordinate 
system with the origin at the tip of the fin is oriented 
so that the positive x-axis is in the opposite direction 
to the gravitational acceleration and the r-axis is 
perpendicular to the fin surface. 

If the radius of the fin r0 is relatively small compared 
with its length, heat conduction in the fin can be 
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NOMENCLATURE 

f dimensionless stream function defined 
by equation (13) 

G auxiliary velocity function, aflag 

g acceleration due to gravity 
h local heat transfer coefficient 
h* dimensionless local heat transfer 

coefficient 
H auxiliary velocity function, aGJat 
K permeability of the porous medium 
k thermal conductivity of the porous 

medium 
kf conductivity of the fin 
N,, convection-conduction parameter, 

(2kLlkrro)JRa 

q pseudosimilarity variable defined 
by equation (12) 

5 dimensionless variable in the x- 
direction 

0 dimensionless temperature of the fluid 
defined by equation (14) 

Br dimensionless temperature for the fin 
defined by equation (15) 

1 transverse surface curvature parameter, 
4L/r,JRa 

p viscosity of the convective fluid in the 
porous medium 

v kinematic viscosity of the convective 
fluid 

4 local heat flux 
r coordinate in the transverse direction 

r. radius of the cylindrical fin 
Ra Rayleigh number, g/?K( Tb - T,)L/va 
T temperature 
IA Darcy’s velocity in the x-direction 
V Darcy’s velocity in the r-direction 
x coordinate in the streamwise direction. 

Greek symbols 
equivalent thermal diffusivity 
coefficient of thermal expansion 

p density of the convective fluid 
4 auxiliary temperature function, ae/ag 
x auxiliary temperature function, a4/ay 
$ stream function defined by equation (6) 
w lateral mass transfer parameter, 

r,,/(vL/agSk(T, - T,)). 

Subscripts 
co condition at infinity 
b condition at the fin base 
f variable associated with the fin. 

approximated as one-dimensional. Accordingly, the The stream function J/ is defined as 
equation governing the heat conduction is 

f$=Z(T- T,) 

where T, is the temperature of the fin; h(x) is the local 
heat transfer coefficient, which is unknown at present; 
k, is the thermal conductivity of the fin. The boundary 
conditions for the fin are 

x = L: T, = Tb (2) 

Here we have assumed that the heat loss from the tip 
of the fin is negligible. 

A two-dimensional steady incompressible free con- 
vection boundary layer flow is considered here. With 
the Boussinesq approximations and Darcy’s law being 
applicable, the governing equations in cylindrical 
coordinates for flow in the porous medium are [lo] 

p,gKB aT =-- 
P dr (4) 

u=~f!!f and 1 a* 
r ar 

v= --- 

r ar @a, b) 

where u and v are the Darcian velocities in the x- and 
r-directions. In the above equations, pm, p and fl are 
the density of the fluid at infinity, the viscosity, 
and the thermal expansion coefficient of the fluid, 
respectively; K and Q are the permeability and equival- 
ent thermal diffusivity of the porous medium; g is the 
gravitational acceleration, and T is the temperature 
of the porous medium. 

Equations (4) and (5) are subject to the boundary 
conditions 

r = ro: 1 a* --- = v,, 
r ax T = T(x, ro) (7a, b) 

r+co: a* 0 g= , T= T, @a, b) 

where v, is the surface mass transfer rate. It is positive 
for injection and negative for withdrawal; T(x,r,) is 
the temperature at the fin surface. 

It should be noted that h(x) and T(x,r,) are 
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unknowns in the above formulation. The conditions 
to.be used to determine these quantities are 

and 

r = r#J: (9) 

r = rO: -kg = h(x)(T, - T,). (10) 

These two conditions state the physical requirements 
that at the solid-fluid boundary the temperatures and 
heat fluxes of the fin and the porous medium are 
continuous. Equations (l)-( 10) constitute the math- 
ematical modeling of the present analysis. 

To facilitate our analysis, the above equations 
are nondimensionalized according to the following 
transformation: 

r=; (11) 

(12) 

* = to d w/wTb - Ta3)x 
V 

> 

f({,tl) 

(13) 

T-T O=d 
Tb - Tm 

With this transformation, equations (l)-(S) and (7)- 
(10) become: 

heat conduction for jin 

3 = wCC)h*(w, 

{=o: $0 

[= 1: er = 1 

boundary layer frow 

a’f=,ae 
a+ 3 

(1 + a&,$ + (f+ Ye,; 

(16) 

(17) 

(18) 

(19) 

(20) 

fK,O) = -2(c$ + w/t>, e(ttO) = 4K) Wa,b) 

f’K, 03) = 0, a-,~)=0 @a, b) 

conditions at the solid-fluid interface 

?J=o: w, 0) = w3 

ad 

(23) 

where N,, = (2kL/k,r,),/Ra and h*(r) = hL/kJRa are 
the conjugate convection-conduction parameter and 
dimensionless local heat transfer coefficient, respec- 
tively 

Ra = gPK(T, - T,)L 
VU 

is the modified Rayleigh number, 1 = 4L/r,JRa and 

J( 

VL 
w = 0, 

&MT, - Tm) > 

are transverse surface curvature parameter and lateral 
mass transfer parameter. w is positive for injection 
and negative for withdrawal. It should be noted that 
NC, is a ratio of convective effect to fin conductance. 
For the case N,, = 0, it represents the free convection 
about an isothermal fin. Also one should note that Iz 
is a measure of transverse curvature and for 1 = 0, 
the geometry reduces to flat plate. 

NUMERICAL SOLUTIONS 

Equation (16) is coupled with equations (19) and 
(20) through the interfacial conditions, equations (23) 
and (24). The complete sets of equations, equations 
(16)-(22) must be solved simultaneously. Analytic 
solution does not seem feasible due to the nonlinearity 
of equation (20) as well as coupling of the system, and 
therefore the solution must be obtained numerically. 
The overall iterative solution procedure used was 
described in detail in refs. [6,7]. 

It is seen that the boundary layer equations do not 
admit similarity solution due to the appearance of 
the surface curvature and nonisothermal boundary 
conditions. The numerical scheme adopted here to 
solve the boundary layer flow is the local nonsimilarity 
method described in refs. [lo, 111. Following the 
standard procedure, one can derive an approximate 
set of differential equations for each ‘level of trunca- 
tion’. The resulting differential equations and bound- 
ary conditions are presented below. 

First level of truncation 

f” = 20 

(I + a Jtr@” + (f + L Jr)e’ = o 

with 

f(&O) = -2wJr 

e(L 0) = e,(5) 

(25) 

(26) 

(27) 

(28) 
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f’(L 03) = 0 (29) 

!9(<, co) = 0. (30) 

Second level of truncation 

f” = 2% (31) 

(1 + 1 JStl)@’ + (f + J.Jr + 25G)8’ = 25f’b 

(32) 

G” = 24’ (33) 

(34) 

with 

f(C,O) = -;+ 
Iw 

G(t,O) = -jJr Pa, b) 

G({, 00) = 0 (37a, b) 

e(t, 4 = 0, 446 co) = 0. W, W 

Third level of truncation 

fe = 20 (39) 

(I + J@@” + (ff + 1,/t + 2&V’ = 2U ‘b (40) 

G” = 24’ (41) 

(1 + ~,hM” + (f + &‘l + 259 

(42) 

H” = 2~’ (43) 

= 4(f’ + @‘)I - $$- - 6G + $ + 4<H 
> 

4 

+ WG’ + 5H’M + 45J5 
Aq5H-&)8 

WI 

with 

f(5,O) = - $e 
20 

G(5,O) = -jp, 

1 w 
W&O) = EJ~;” 

(46a-c) 

f’(t, ~0) = 0, G’((, co) = 0, H’(& co) = 0 
(47a-c) 

e(r, ~0) = 0, 4(5,00) = 0, x(5, oo) = 0. 
(48a-c) 

In the above equations, the primes are the deriva- 
tives with respect to 9. The variables G, H, 4, and x 
are defined as G = aflay, H = aG/ag, C#J = S/a& and 
x = &j/a<. It is pertinent to note that 5 plays the role 
of a parameter in the above equations. 

Solutions of the above sets of ordinary differential 
equations may be obtained by various methods. 
Among others, one may recast the differential equa- 
tions into integral forms and solve them by iteration. 
The details of this procedure were described in ref. 
[lo]. To accommodate the fast variations of heat- 
transfer-related quantities in the regions near the tip 
of the fin and the solid boundary, a non-uniform 
mesh with smallest step size in these regions was 
chosen. A search for the value of tt at infinity for each 
streamwise location was made to ensure that the 
value of f” at infinity is less than 10e3. This results 
in, for the selected values of 1, w, and N,,, a total of 
33 points along the Ej-coordinate, and a minimum of 
121 points near the fin tip and a maximum of 251 
points near the fin base along the q-coordinate. The 
following results are based on the third level of 
truncation. 

RESULTS AND DISCUSSION 

It was noted that the present analysis includes the 
case of free convection about a vertical cylinder with 
constant temperature distribution. This corresponds 
to the case of N,, = 0. Solutions to this problem have 
also been obtained by Yiicel [9], who has used the 
finite-difference method. Table 1 presents the values 
of - 0’( 1,0) at the base of the fin ([ = 1) for various 
values of 1 and w both from the present analysis and 
from ref. [9]. It is seen that the results are in good 
agreement. 

Results of fin temperature distribution, which serves 
as the thermal boundary conditions of the boundary 
layer flow, are presented in Figs. 1 and 2 for J. = 1 
and 3, respectively, for selected values of w and 
N,,. One sees that in all cases the fin temperature 
distribution increases monotonically from the tip of 
the fin (5 = 0) to the base. It is also seen that larger 
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Table 1. A comparison of values of -0’(l,O) with 
those obtained by Yiicel [9] for constant wall 

temperature 

Present 
@,o) analysis Ref. [9] 

No mass flux (0.50,O.O) 0.4888 0.4902 
(1.00,O.O) 0.5321 0.5347 
(2.00,O.O) 0.6145 0.6192 
(3.00,O.O) 0.6945 0.6991 
(4.00,O.O) 0.7721 0.7753 

Withdrawal (0.25, -0.0625) 0.4953 0.4957 
(0.50, - 0.1250) 0.5475 0.5483 
(1.00, -0.2500) 0.6525 0.6543 
(1.50, -0.3750) 0.7610 0.7629 
(2.00, -0.5000) 0.8700 0.8722 

Injection (0.20,0.075) 0.4283 0.4300 
(0.40,0.150) 0.4152 0.4176 
(0.80,0.300) 0.3925 0.3961 
(1.20,0.450) 0.3745 0.3779 
(1.60,0.600) 0.3604 0.3621 

Plate fin (0.0, 0.125) 0.3891 0.3904 
(0.0,0.250) 0.3420 0.3422 
(0.0,0.500) 0.2546 0.2595 
(0.0,0.750) 0.1910 0.1934 
(0.0,1.000) 0.1398 0.1415 

T/ - Tco 
Tb-T, 0.6 

0.2 
0.0 0.2 0.4 0.6 0.8 1.0 

c 
FIG. 1. Fin temperature distribution for 3. = 1.0. 

values of N,, give rise to larger fin temperature 
variations. This behavior is evident from the definition 
of N,,, which shows that higher values of N,, corre- 
spond to low fin conductances and high convection 
effects, thus resulting in increased temperature vari- 
ations. In addition, these figures show that withdrawal 
of fluid (o < 0) amplifies these variations while injec- 
tion of fluid (o > 0) reduces variations. It will be seen 
later that this is due to the fact that withdrawal of 
fluid enhances the heat transfer rate, and accordingly 
increases the variations. The figures also demonstrate 
that higher values of 1 give rise to larger fin tempera- 

T/ - T, 
Tb - 7-m 0.6 

0.0 0.2 0.4 0.6 0.8 1.0 

E 
FIG. 2. Fin temperature distribution for 1 = 3.0. 

ture variations. 
The local heat transfer coefficient is defined as 

h(x) = T ar;=ro (49) 
f- m 

which may be cast in dimensionless form as 

hL 1 lvl,O) 
k,fRa -= -zm’ (50) 

Representative distributions of this quantity vs r for 
1 = 1.0 and 3.0, and selected values of N,, and o are 
presented in Figs. 3 and 4. It is observed that for 
small values of N,, (N,, = 0.1) the local heat transfer 
coefficients behave like those for isothermal boundary 
conditions. The coefficients decrease along the increas- 
ing streamwise direction. For larger values of N,, 
(N,, = 1.5), the coefficients decrease at first, reach a 
minimum value, and then increase with increasing 
streamwise direction. This is due to an enhanced 
buoyancy force encountered as the fluid passes from 
the fin tip to fin base. For a fixed value of N,,, it is 
seen that withdrawal of fluid gives rise to higher local 
heat transfer coefficients. Also, for given values of N,, 
and w, higher local heat transfer coefficients are seen 
at larger values of 1. 

The average heat transfer coefficient can be 
obtained by integrating the local heat transfer 
coefficient over the fin surface, and then dividing by 
the length of the fin, i.e. 

IT=; ‘h(x)dx 
I 0 

or in dimensionless form 

(51) 

h’(f)df. (52) 

The numerical results of this quantity are plotted in 
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0.0 1 I 1 I 1 I 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 3. Local heat transfer coefficient for L = 1.0. 

2.5 

2.0 

1.5 

1.0 

0.5 

O.O V” 0.0 0.2 0.4 0.6 

E 

FOG. 4. Local heat transfer coefficient for 1 = 3.0. 

1.5, ( , , , , , I , 

1.2 

XL 

x = 3.0 {$ 

~~ 

k&iii 

0.9 
x = 1.0 { ;:; 

a.6025 -0.5 -0.25 0.0 05 

” 

FIG. 5. Average heat transfer coeflicient. 

Fig. 5. It is clear that as a consequence of higher local 
heat transfer coefficients for smaller values of o, 
higher values of average heat transfer coefficients 
prevail for smaller o. Also we note an increase of 
average heat transfer coefficients with increasing 1 or 

NW 

FIG. 6. Local heat flux for k = 1.0. 

E 

FIG. 7. Local heat flux for I = 3.0. 

The local heat flux can be expressed as 

4 = -kar 
ar l=ro 

(531 

which can be cast in dimensionless form as 

The results of dimensionless local heat fluxes are given 
in Figs. 6 and 7. It can be seen that for a given value 
of A, a decrease of o increases the local heat fluxes. 

Comparing Fig. 6 with Fig. 7, one can see that the 
local heat fluxes for larger values of A are higher than 
those for small 1. However, one should note that the 
radius of a fin could be different for each 1. Thus, 
lower values of local heat fluxes for smaller I’s do not 
necessarily imply that total heat transfer rates over 
the fin surface are lower than those for larger 2s. This 
will be discussed further below. 
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w 

FIG. 8. Total heat transfer rate. 

The total heat transfer rate over the fin surface can 
be obtained from 

L 

Q = 2nr, s q(x) dx 
0 
L = 2nro s I -kg= dx (55) 

0 r VI 

which can be. rewritten as 4. 

Q 
2 ’ ~*W’,M d5. 

rlak(T,, - T,)L = 1 o s 
(56) 

Numerical results of the quantity on the left-hand 
side of equation (56) vs w are plotted in Fig. 8 for 
representative values of NC, and 1. It can be seen that 
the total heat transfer rates decrease as o increases. 
This is in agreement with the previous results for local 
heat fluxes. It also shows that for fixed values of 1, 
an increase of N,, results in a decrease of total heat 
transfer rate. Also it is seen that smaller values of I 
give rise to higher values of the total heat transfer 
rate. This was expected, since a smaller value of 1 
represents a larger value of r. (i.e. larger convection 
surfaces), and therefore results in a larger value of the 
total heat transfer rate. 

CONCLUDING REMARKS 

The present analysis has yielded the solution of the 
problem of conjugate natural convection from a 
vertical cylindrical fin embedded in a porous medium 

and with a uniform lateral mass transfer specified at 
the surface. It was shown that higher values of 
conjugate convection conduction parameter N,, result 
in nonmonotonical local heat transfer distributions. 
The effect of withdrawal of fluid is to increase the 
fin temperature variation, the local heat transfer 
coefficient, the average heat transfer coefficient, the 
local heat flux and the total heat transfer rate, and 
injection results in reverse effects. 
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CONVECTION NATURELLE CONJUGUEE AUTOUR D’UNE AILETTE CYLINDRIQUE 
VERTICALE AVEC FLUX MASSIQUE LATERAL, DANS UN MILIEU POREUX 

SATURE 

R&urn&--On btudie numtriquement le problime de la convection naturelle conjuguke autour d’une ailette 
cylindrique verticale avec un flux massique lateral uniforme, dans un milieu poreux sature de fluide. Des 
solutions bastes sur le troisibme niveau de troncature sont obtenues par une mkthode non similaire locale. 
Les effets du flux massique g la surface sont p&en& ainsi que ceux du paramttre de conjugaison 
convection-conduction et ceux de la courbure de la surface sur la distribution de la tempkrature dans 
I’ailette et sur les coefficients locaux et globaux de transfert de chaleur. Une comparaison avec des solutions 

aux diffbrences finies pour le cas de tempkrature parittale constante montre un bon accord. 
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KOMBINIERTE NATtiRLICHE KONVEKTION AN EINER SENKRECHTEN, 
ZYLINDRISCHEN RIPPE BE1 QUERSTROMUNG IN EINEM GESjiTTIGTEN PORtjSEN 

MEDIUM 

Zusammenfassung-Der Fall der kombinierten natiirlichen Konvektion an einer senkrechten, zylindrischen 
Rippe bei einheitlicher QuerstrBmung in einem fluid-gesattigten poriisen Medium wurde numerisch unter- 
sucht. Mit Hilfe der Methode der lokalen Unahnlichkeit wurden Lijsungen durch Abbruch nach dem 
dritten Term ermittelt. Der Einflulj von Massenstrom, kombiniertem Konvektions+Leitungs-Parameter 
und OberflHchenkriimmung auf die Rippentemperaturverteilung, den ortlichen und mittleren Wlrme- 
iibergangskoeffizienten, die iirtliche WIrmestromdichte und die gesamte Wirmeleistung werden dargestellt. 
Ein Vergleich mit den Ergebnissen des Differenzenverfahrens fiir den Fall konstanter Ober- 

RCchentemperatur wurde durchgefiihrt und ergab gute tibereinstimmung. 

COHP5DKEHHAfl 3AAAqA ECTECTBEHHOI? KOHBEKqMM Y BEPTMKAJIbHOrO 
4MjX,IHflPM~ECKOI-0 PE6PA C I-IOI-IEPE’4HbIM I-IOTOKOM MACCbI B 

HACMUEHHYIO HOPMCTYIO CPEAY 

AHHOTauIIn-%iCJIeHHO accnenyexn sanaga COnpWUeHHOti ecTecTseHH0i-i KoHBeKuwi OKOnO eepmranb- 

HOrO UWIAHPpWIeCKOTO pe6pa C OnHOpOL,HbIM nOnepelHbIM nOTOKOM MaCCbI B HaCbIWeHHyEO mWKOC- 

Tbm nopec-ry~o cpeny. Pemenan c ToqHocTbm no YneHoa Tpe-rbero nopmKa h4anocTH nonyveHbI 

MeTOnOM JlOKaJlbHOti HeaBTOMOneJIbHOCTA. HairneHo BJIWIHWe nOBepXHOCTHOr0 nOTOKa MaCCbI, napa- 

Merpaconpn~esan N Kpeas3HbI nosepxHocTa HapacnpeneneHaeTehmepaTypbI ~pe6pe,~ecT~bIP KO~+- 

@WIIeHT TennooTnawi,MeCTHym nJlOTHOCTbTenJIOBO~0 noToKa,cpenHHi2 K03++iuiieHTTennooTnare A 

061mii TenJIOBOii nOTOK.nOJIyYeHHbIe pe3yJIbTaTbI XOpOIllO COrJIaCylOTCSI C ~llIeHW7MH,IIOJIy'IeHHbIMH 


