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Abstract—The problem of conjugate natural convection about a vertical cylindrical fin with uniform

lateral mass flux in a fluid-saturated porous medium has been studied numerically. Solutions based on

the third level of truncation are obtained by the local nonsimilarity method. The effects of the surface

mass flux, the conjugate convection—conduction parameter, and the surface curvature on fin temperature

distribution, local heat transfer coefficient, local heat flux, average heat transfer coefficient, and total heat

transfer rate are presented. A comparison with finite-difference solutions for the case of constant wall
temperature was made, and found in a good agreement.

INTRODUCTION

THE ANALYSIS of conjugate heat transfer about a
vertical fin has attracted considerable interest during
the past few years. The basic feature which differs
from the conventional fin theory or boundary layer
flow analysis is that the heat transfer coefficient
or thermal boundary conditions, instead of being
prescribed as in conventional studies, are part of
the solutions to the problem. This consideration
is necessary and more realistic in many practical
applications, particularly in the heat transfer analysis
of extended surfaces, where the thermal boundary
conditions are prescribed only at the ends of the
surfaces. The close interactions between the conduc-
tion in the solid boundary and the convection in the
adjacent boundary layer flow exhibit quite an unusual
local behavior in heat transfer characteristics.
Conjugate heat transfer problems induced by vari-
ous convection mechanisms (forced, free, mixed con-
vection) about a flat plate or a cylindrical surface in
Newtonian fluids have been investigated extensively
[1-5]. Recently, Liu et al. [6,7] have extended the
analysis to include the conjugate mixed convection in
porous media. However, in the above studies the
influence of injection or withdrawal of fluids on
conjugate heat transfer has not been attempted. In
this paper we direct our attention to conjugate natural
convection about a vertical cylindrical fin in porous
media and to the effects of surface mass flux on heat
transfer characteristics. Natural convection about a
vertical cylinder in a porous medium has been dis-
cussed by Minkowycz and Cheng [8] for the case of
power-law variations of the surface temperature, and

the influence of uniform lateral mass flux on natural
convection about a vertical cylinder with prescribed
constant wall temperature or constant wall heat flux
was analyzed by Yiicel [9]. The present analysis is an
extension of the previous work to include the conju-
gate effects on the heat transfer analysis.

Numerical solutions of the governing differential
equations are generated by the local nonsimilarity
method. Results are presented in tabular or graphic
forms as functions of three dominant parameters: the
transverse curvature parameter A, the surface mass
transfer parameter , and the conjugate convection—
conduction parameter N... A comparison was made
with Yiicel’s results [9], which were obtained by finite
difference method, for the case of constant wall
temperature, and found in good agreement.

ANALYSIS

Consider a vertical cylindrical fin with length L
and radius r, whose upper end is attached to a surface
with temperature T;. The fin with uniform blowing
or suction rate v, is situated in a quiescent fluid-
saturated porous medium of temperature T, which
is assumed to be smaller than T;. The coordinate
system with the origin at the tip of the fin is oriented
so that the positive x-axis is in the opposite direction
to the gravitational acceleration and the r-axis is
perpendicular to the fin surface.

If the radius of the fin r is relatively small compared
with its length, heat conduction in the fin can be
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dimensionless stream function defined

by equation (13)

auxiliary velocity function, df/0¢

acceleration due to gravity

local heat transfer coefficient

dimensionless local heat transfer

coefficient

auxiliary velocity function, 0G/0¢

permeability of the porous medium

thermal conductivity of the porous

medium

k; conductivity of the fin

N.. convection—conduction parameter,
(2kL/ kfro)\/ Ra

g local heat flux

r  coordinate in the transverse direction

ro radius of the cylindrical fin

Ra Rayleigh number, gBK(T,, — T, )L/va

T temperature

u

v

X

TN =~

=R

Darcy’s velocity in the x-direction
Darcy’s velocity in the r-direction
coordinate in the streamwise direction.

Greek symbols
o  equivalent thermal diffusivity
B coefficient of thermal expansion

NOMENCLATURE

n pseudosimilarity variable defined
by equation (12)

¢ dimensionless variable in the x-
direction

6 dimensionless temperature of the fluid
defined by equation (14)

0; dimensionless temperature for the fin
defined by equation (15)

4 transverse surface curvature parameter,
4L/ro\/Ra

u viscosity of the convective fluid in the

porous medium

kinematic viscosity of the convective

fluid

density of the convective fluid

auxiliary temperature function, 66/6¢

auxiliary temperature function, d¢/d¢

stream function defined by equation (6)

lateral mass transfer parameter,

Vun/ (VL /g BK(Ty — To)).

<

g exev

Subscripts
oo condition at infinity
b condition at the fin base
f variable associated with the fin.

approximated as one-dimensional. Accordingly, the
equation governing the heat conduction is
d*T; _ 2h(x)
dx? ko

(T; - T,,) 1)

where T; is the temperature of the fin; h(x) is the local
heat transfer coefficient, which is unknown at present;
k is the thermal conductivity of the fin. The boundary
conditions for the fin are

x=L T=T, @)
_o 9% _
x=0 =0 3)

Here we have assumed that the heat loss from the tip
of the fin is negligible.

A two-dimensional steady incompressible free con-
vection boundary layer flow is considered here. With
the Boussinesq approximations and Darcy’s law being
applicable, the governing equations in cylindrical
coordinates for flow in the porous medium are [10]

O(Lov) _ pogKBIT @)
ar\rdr)” u or

afom\ _t(wer_awer\
ar\"or) " a\orox oxor)

The stream function y is defined as

F 10y

and b= — s

<

(6a,b)

e

]
~ | —
2l
~

where u and v are the Darcian velocities in the x- and
r-directions. In the above equations, p,, ¢ and B are
the density of the fluid at infinity, the viscosity,
and the thermal expansion coefficient of the fluid,
respectively; K and « are the permeability and equival-
ent thermal diffusivity of the porous medium; g is the
gravitational acceleration, and T is the temperature
of the porous medium.

Equations (4) and (5) are subject to the boundary
conditions

10
r=ro —;—%: Uys T = T(x,ry)(7a,b)
r o o0 %-'f:o, T=T, (8ab)

where v,, is the surface mass transfer rate. It is positive
for injection and negative for withdrawal; T(x,r,) is
the temperature at the fin surface.

It should be noted that h(x) and T(x,r,) are
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unknowns in the above formulation. The conditions
to be used to determine these quantities are

r=rg T(x,ro) = Ty(x) 9
and
r=rg —k%z: = h(x)T; ~ T,). (10)

These two conditions state the physical requirements
that at the solid—fluid boundary the temperatures and
heat fluxes of the fin and the porous medium are
continuous. Equations (1)-(10) constitute the math-
ematical modeling of the present analysis.

To facilitate our analysis, the above equations
are nondimensionalized according to the following
transformation:

(=7 (11)

_r*—ri [(BeK(T, — T.)
=", \/( xva ) (12)
v= ro\/ (M)ﬂé, Do 1)
0= ;b __7;? (14)
6, = ;',: ;“’. (15)

With this transformation, equations (1)—(5) and (7)-
(10) become:

heat conduction for fin

d%
d—gf = (N Jh*(6)6; (16)
—o 90_
E=10 i 0 17
boundary layer flow
* 20
5_712 = 26r7 (19)

%0 a0
(L4 AJe5 2+ + D5,

(20
= 25(6»: 5 " 66) 0

fG.0) = —2( §—£+ wJé), 6(Z,0) =64  (2la,b)

J(G®)=0, 6¢0)=0  (22ab)

625
conditions at the solid—fluid interface
n=0 6(0)=0S) (23)
00
1 0nly—o
=0 h*&) = —= 24
" O3 7me

where N, = (2kL/k;r)\/Ra and h*(£) = hL/k,/Ra are
the conjugate convection—conduction parameter and
dimensionless local heat transfer coefficient, respec-
tively

_8BK(T, — T, )L
va

Ra

is the modified Rayleigh number, 1 = 4L/ro,/Ra and

(=)
= "V \ogBK(T, — T)

are transverse surface curvature parameter and lateral
mass transfer parameter. w is positive for injection
and negative for withdrawal. It should be noted that
N, is a ratio of convective effect to fin conductance.
For the case N, = 0, it represents the free convection
about an isothermal fin. Also one should note that 1
is a measure of transverse curvature and for A =0,
the geometry reduces to flat plate.

NUMERICAL SOLUTIONS

Equation (16) is coupled with equations (19) and
(20) through the interfacial conditions, equations (23)
and (24). The complete sets of equations, equations
(16)—(22), must be solved simultaneously. Analytic
solution does not seem feasible due to the nonlinearity
of equation (20) as well as coupling of the system, and
therefore the solution must be obtained numerically.
The overall iterative solution procedure used was
described in detail in refs. [6, 7].

It is seen that the boundary layer equations do not
admit similarity solution due to the appearance of
the surface curvature and nonisothermal boundary
conditions. The numerical scheme adopted here to
solve the boundary layer flow is the local nonsimilarity
method described in refs. [10,11]. Following the
standard procedure, one can derive an approximate
set of differential equations for each ‘level of trunca-
tion’. The resulting differential equations and bound-
ary conditions are presented below.

First level of truncation

=20 (25)
(1+ A/En8" + (f + A /O =0 (26)
with
J&0) = —20/¢ @7
6(£,0) = 64%) (28)
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f1& ) =0 29)
B¢, ) = (30)
Second level of truncation
=20 31)
(1 + A0 + (f + & + 26608 = 29
(32
G =24 (33)
(1 + 1JEne" + (f + A€ + 26G))
= 2f"+ £~ 5
<3G +3 \/c>9 (34)
with
fE0= 305 GEO=-3% G
B0 =00 HEO=THO G6ab)
fE®)=0  GEw)=0 (Tab)
0c,©) =0, #Eoo)=0.  (38ab)
Third level of truncation
[ =20 (39)

(1 +/mo" + 3 + AJE + 28G)0 = 24 f'¢ (40)

G" =24’ @1)
(U + AJEnG" +(f + AJE + 2£G)p
Z S + EG)p + 2f g — g
2J¢
- (36 +A g 25}1)0' @2)
2J¢
H' =2y 43)

(1 + A/ + (f + A/ + 286Gy

= Gy — L g (66 4H>
Af' + &G \/gd) +\/€+ ¢H )¢’

: , A\
+ 202G + (HYp + —— T \/§>0

(44)

0/[
44&/5 (

with
2w
=—= G(&,0) = —-—,
S0 = ~Zoyt GO = -3 7
H(£,0) = 10 \/023 (45a-c)
6(£,0) =048, (5,0 = (é) (£,0) = &0
] - s dé X » - déz
(46a—c)
f§0)=0, G 0)=0, H(E 0=
(47a—c)
08¢, 0)=0, & 0)=0, x&o)=
(48a—c¢)

In the above equations, the primes are the deriva-
tives with respect to . The variables G, H, ¢, and y
are defined as G = df /0&, H = 0G/3¢&, ¢ = 00/9¢E, and
x = 0¢/0&. It is pertinent to note that & plays the role
of a parameter in the above equations.

Solutions of the above sets of ordinary differential
equations may be obtained by various methods.
Among others, one may recast the differential equa-
tions into integral forms and solve them by iteration.
The details of this procedure were described in ref.
[10]. To accommodate the fast variations of heat-
transfer-related quantities in the regions near the tip
of the fin and the solid boundary, a non-uniform
mesh with smallest step size in these regions was
chosen. A search for the value of 5 at infinity for each
streamwise location was made to ensure that the
value of f” at infinity is less than 1073, This results
in, for the selected values of 4, w, and N, a total of
33 points along the £-coordinate, and a minimum of
121 points near the fin tip and a maximum of 251
points near the fin base along the n-coordinate. The
following results are based on the third level of
truncation.

RESULTS AND DISCUSSION

It was noted that the present analysis includes the
case of free convection about a vertical cylinder with
constant temperature distribution. This corresponds
to the case of N, = 0. Solutions to this problem have
also been obtained by Yiicel [9], who has used the
finite-difference method. Table 1 presents the values

—6'(1,0) at the base of the fin (¢ = 1) for various
values of 4 and @ both from the present analysis and
from ref. [9]. It is seen that the results are in good
agreement.

Results of fin temperature distribution, which serves
as the thermal boundary conditions of the boundary
layer flow, are presented in Figs. 1 and 2 for A =1
and 3, respectively, for selected values of w and
N,.. One sees that in all cases the fin temperature
distribution increases monotonically from the tip of
the fin (£ = 0) to the base. It is also seen that larger
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Table 1. A comparison of values of —&(1,0) with
those obtained by Yiicel [9] for constant wall

temperature
Present
(4, w) analysis  Ref. [9]
No mass flux (0.50,0.0) 0.4888 0.4902
(1.00,0.0) 0.5321 0.5347
(2.00,0.0) 0.6145 0.6192
(3.00,0.0 0.6945 0.6991
(4.00,0.0) 0.7721 0.7753
Withdrawal  (0.25, —0.0625) 0.4953 0.4957
(0.50, —0.1250) 0.5475 0.5483
(1.00, —0.2500) 0.6525 0.6543
(1.50, —0.3750) 0.7610 0.7629
(2.00, —0.5000) 0.8700 0.8722
Injection (0.20,0.075) 0.4283 0.4300
(0.40,0.150) 04152 04176
(0.80,0.300) 0.3925 0.3961
(1.20,0.450) 0.3745 0.3779
(1.60,0.600) 0.3604 0.3621
Plate fin (0.0,0.125) 0.3891 0.3904
(0.0,0.250) 0.3420 0.3422
(0.0,0.500) 0.2546 0.2595
(0.0,0.750) 0.1910 0.1934
(0.0, 1.000) 0.1398 0.1415
1.0 T T T
s 0.4 {
0.0 }Ncc =0.1
0.8 |- —0.4 —
Ty - T
To-Tw g6l ]
N\ 2
0.4 i
0.0 }Ncc =15
0.4}~ 0.4 —
- A=1.0 4
0.2 1 1 1 i

0.0 0.2 04 0.6 08 1.0

FiG. 1. Fin temperature distribution for 4 = 1.0.

values of N, give rise to larger fin temperature
variations. This behavior is evident from the definition
of N.., which shows that higher values of N corre-
spond to low fin conductances and high convection
effects, thus resulting in increased temperature vari-
ations. In addition, these figures show that withdrawal
of fluid (w < 0) amplifies these variations while injec-
tion of fluid (w > 0) reduces variations. It will be seen
later that this is due to the fact that withdrawal of
fluid enhances the heat transfer rate, and accordingly
increases the variations. The figures also demonstrate
that higher values of 1 give rise to larger fin tempera-
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FIG. 2. Fin temperature distribution for 4 = 3.0.

ture variations.
The local heat transfer coefficient is defined as

9T
h 0 e=ro 49
() =~ 49)
which may be cast in dimensionless form as
hL 1 68(0) (50)

kJRa  2/e04e)

Representative distributions of this quantity vs ¢ for
4 = 1,0 and 3.0, and selected values of N_. and w are
presented in Figs. 3 and 4. It is observed that for
small values of N, (N, = 0.1) the local heat transfer
coefficients behave like those for isothermal boundary
conditions. The coefficients decrease along the increas-
ing streamwise direction. For larger values of N,
(N, = L.5), the coefficients decrease at first, reach a
minimum value, and then increase with increasing
streamwise direction. This is due to an enhanced
buoyancy force encountered as the fluid passes from
the fin tip to fin base. For a fixed value of N, it is
seen that withdrawal of fluid gives rise to higher local
heat transfer coefficients. Also, for given values of N,
and o, higher local heat transfer coefficients are seen
at larger values of 4.

The average heat transfer coefficient can be
obtained by integrating the local heat transfer
coefficient over the fin surface, and then dividing by
the length of the fin, ie.

1 (*
= EL h(x)dx (51)
or in dimensionless form
KL !
— h‘ . 5
k/Ra L (£ d¢ (52)

The numerical results of this quantity are plotted in
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30 :

FiG. 5. Average heat transfer coefficient.

Fig. 5. It is clear that as a consequence of higher local
heat transfer coefficients for smaller values of w,
higher values of average heat transfer coefficients
prevail for smaller w. Also we note an increase of
average heat transfer coefficients with increasing 4 or
N
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FIG. 6. Local heat flux for 4 = 1.0,
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F16. 7. Local heat flux for 4 = 3.0.

The local heat flux can be expressed as

or
g= *kEr_r=ro (53)
which can be cast in dimensionless form as
o _ 0% 54

KT, ~ T))JRa  2/&

The results of dimensionless local heat fluxes are given
in Figs. 6 and 7. It can be seen that for a given value
of 4, a decrease of w increases the local heat fluxes.

Comparing Fig. 6 with Fig. 7, one can see that the
local heat fluxes for larger values of A are higher than
those for small A. However, one should note that the
radius of a fin could be different for each A. Thus,
lower values of local heat fluxes for smaller ’s do not
necessarily imply that total heat transfer rates over
the fin surface are lower than those for larger A’s. This
will be discussed further below.
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FiG. 8. Total heat transfer rate.

The total heat transfer rate over the fin surface can
be obtained from

L
Q= 21tr0f q(x)dx

o
L
oT
= 27"'0L — k= '='de (55)
which can be rewritten as
o _2(.
T TOL = L 6D (56)

Numerical results of the quantity on the left-hand
side of equation (56) vs w are plotted in Fig. 8 for
representative values of N . and A. It can be seen that
the total heat transfer rates decrease as w increases.
This is in agreement with the previous results for local
heat fluxes. It also shows that for fixed values of 4,
an increase of N results in a decrease of total heat
transfer rate. Also it is seen that smaller values of 4
give rise to higher values of the total heat transfer
rate. This was expected, since a smaller value of 4
represents a larger value of ry (i.e. larger convection
surfaces), and therefore results in a larger value of the
total heat transfer rate.

CONCLUDING REMARKS

The present analysis has yielded the solution of the
problem of conjugate natural convection from a
vertical cylindrical fin embedded in a porous medium

and with a uniform lateral mass transfer specified at
the surface. It was shown that higher values of
conjugate convection conduction parameter N result
in nonmonotonical local heat transfer distributions.
The effect of withdrawal of fluid is to increase the
fin temperature variation, the local heat transfer
coefficient, the average heat transfer coefficient, the
local heat flux and the total heat transfer rate, and
injection results in reverse effects.
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CONVECTION NATURELLE CONJUGUEE AUTOUR D'UNE AILETTE CYLINDRIQUE
VERTICALE AVEC FLUX MASSIQUE LATERAL, DANS UN MILIEU POREUX
SATURE

Résumé—On étudie numériquement le probléme de la convection naturelle conjuguée autour d’une ailette

cylindrique verticale avec un flux massique latéral uniforme, dans un milieu poreux saturé de fluide. Des

solutions basées sur le troisiéme niveau de troncature sont obtenues par une méthode non similaire locale.

Les effets du flux massique 4 la surface sont présentés ainsi que ceux du paramétre de conjugaison

convection—conduction et ceux de la courbure de la surface sur la distribution de la température dans

Iailette et sur les coefficients locaux et globaux de transfert de chaleur. Une comparaison avec des solutions
aux différences finies pour le cas de température pariétale constante montre un bon accord.
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KOMBINIERTE NATURLICHE KONVEKTION AN EINER SENKRECHTEN,
ZYLINDRISCHEN RIPPE BEI QUERSTROMUNG IN EINEM GESATTIGTEN POROSEN
MEDIUM

Zusammenfassung—Der Fall der kombinierten natiirlichen Konvektion an einer senkrechten, zylindrischen
Rippe bei einheitlicher Querstromung in einem fluid-gesittigten porésen Medium wurde numerisch unter-
sucht. Mit Hilfe der Methode der lokalen Unéhnlichkeit wurden Losungen durch Abbruch nach dem
dritten Term ermittelt. Der EinfluB von Massenstrom, kombiniertem Konvektions—Leitungs-Parameter
und Oberflichenkrimmung auf die Rippentemperaturverteilung, den ortlichen und mittleren Wirme-
iibergangskoeffizienten, die 6rtliche Warmestromdichte und die gesamte Wirmeleistung werden dargestellt.
Ein Vergleich mit den Ergebnissen des Differenzenverfahrens fiir den Fall konstanter Ober-
flichentemperatur wurde durchgefithrt und ergab gute Ubereinstimmung.

COIMPSXXEHHAS 3AJJAYA ECTECTBEHHOW KOHBEKLMWH V¥V BEPTUKAJIBHOTO
LHHJIUHAPUYECKOI'O PEBPA C IMOITEPEYHBIM IMOTOKOM MACCEHI B
HACBIIIEHHYIO NMOPUCTYKO CPEAY

Annorauns— UKCIIEHHO UCCIenyeTcs 3aa4a CONPAXEHHOM eCTECTBEHHON KOHBEKLMH OKOJI0 BEPTHKAMDb-
HOTO LMJHHAPHYECKOro pe6pa ¢ ONHOPOAHLIM MONEPEYHbIM MOTOKOM MAcChl B HACBILEHHYIO XHIKOC-
ThIO MOPHCTYI Cpelly. PewleHMs ¢ TOYHOCTBIO A0 HYJEHOB TPETLETO MOPAAKA MANOCTH MOJyUEHBI
METOI0M JIOKAJIbHOH HeaBTOMOAEeAbHOCTH. HalineHo BiMAHHE MOBEPXHOCTHOTO MOTOKAa MAcChl, Mapa-
MeTpa CONpsKEHHS ¥ KPHUBH3HbI IOBEPXHOCTH Ha pacnpelesicHHe TEMNepaTypsl B pebpe, MeCTHbIN KO-
GULHEHT TENNOOTAa4H, MECTHYIO IUIOTHOCTb TEMJIOBOTO NOTOKA, CPEAHHHA kK0IPPHLNEHT TENNOOTIAYH 1
o61mit TennoBoi notok. [TosyyeHHbIE Pe3yIbTaThl XOPOWIO COTMACYIOTCH ¢ PElICHHAMH, MOTY4eHHbIMI
METOLOM KOHEYHBIX pa3HOCTel U1 Cliyyas MOCTOAHHOM TEMIIEpaTypH! CTEHKH.



